
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration

Charles Van Noland edited this page on 14 Dec 2017 · 18 revisions

Grbl's Settings and What They Mean
Quick Guide to Setting Up Your Machine for the First Time

First, connect to Grbl using the serial terminal of your choice.

Set the baud rate to 115200 as 8-N-1 (8-bits, no parity, and 1-stop bit.)

Once connected you should get the Grbl-prompt, which looks like this:

Type $ and press enter to have Grbl print a help message. You should not see any local
echo of the $ and enter. Grbl should respond with:

The ‘$’-commands are Grbl system commands used to tweak the settings, view or change
Grbl's states and running modes, and start a homing cycle. The last four non-'$'
commands are realtime control commands that can be sent at anytime, no matter what
Grbl is doing. These either immediately change Grbl's running behavior or immediately
print a report of the important realtime data like current position (aka DRO).

Grbl v1.1 Configuration Manual

Quick-Links:

Getting Started

Grbl 1.1f ['$' for help]

[HLP:$$ $# $G $I $N $x=val $Nx=line $J=line $SLP $C $X $H ~ ! ? ctrl-x]

Grbl Settings
$$ - View Grbl settings

https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration/_history
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#grbls-xval-settings-and-what-they-mean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#quick-guide-to-setting-up-your-machine-for-the-first-time

To view the settings, type $$ and press enter after connecting to Grbl. Grbl should
respond with a list of the current system settings, as shown in the example below. All of
these settings are persistent and kept in EEPROM, so if you power down, these will be
loaded back up the next time you power up your Arduino.

The x of $x=val indicates a particular setting, while val is the setting value. In prior
versions of Grbl, each setting had a description next to it in () parentheses, but Grbl
v1.1+ no longer includes them unfortunately. This was done to free up precious flash
memory to add the new features available in v1.1. However, most good GUIs will help out
by attaching descriptions for you, so you know what you are looking at.

$0=10 Step pulse, microseconds

$1=25 Step idle delay, milliseconds

$2=0 Step port invert, mask

$3=0 Direction port invert, mask

$4=0 Step enable invert, boolean

$5=0 Limit pins invert, boolean

$6=0 Probe pin invert, boolean

$10=1 Status report, mask

$11=0.010 Junction deviation, mm

$12=0.002 Arc tolerance, mm

$13=0 Report inches, boolean

$20=0 Soft limits, boolean

$21=0 Hard limits, boolean

$22=1 Homing cycle, boolean

$23=0 Homing dir invert, mask

$24=25.000 Homing feed, mm/min

https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#0--step-pulse-microseconds
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#1---step-idle-delay-milliseconds
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#2--step-port-invert-mask
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#3--direction-port-invert-mask
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#4---step-enable-invert-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#5----limit-pins-invert-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#6----probe-pin-invert-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#10---status-report-mask
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#11---junction-deviation-mm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#12--arc-tolerance-mm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#13---report-inches-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#20---soft-limits-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#21---hard-limits-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#22---homing-cycle-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#23---homing-dir-invert-mask
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#24---homing-feed-mmmin

$25=500.000 Homing seek, mm/min

$26=250 Homing debounce, milliseconds

$27=1.000 Homing pull-off, mm

$30=1000. Max spindle speed, RPM

$31=0. Min spindle speed, RPM

$32=0 Laser mode, boolean

$100=250.000 X steps/mm

$101=250.000 Y steps/mm

$102=250.000 Z steps/mm

$110=500.000 X Max rate, mm/min

$111=500.000 Y Max rate, mm/min

$112=500.000 Z Max rate, mm/min

$120=10.000 X Acceleration, mm/sec^2

$121=10.000 Y Acceleration, mm/sec^2

$122=10.000 Z Acceleration, mm/sec^2

$130=200.000 X Max travel, mm

$131=200.000 Y Max travel, mm

$132=200.000 Z Max travel, mm

The $x=val command saves or alters a Grbl setting, which can be done manually by
sending this command when connected to Grbl through a serial terminal program, but
most Grbl GUIs will do this for you as a user-friendly feature.

To manually change e.g. the microseconds step pulse option to 10us you would type this,
followed by an enter:

$x=val - Save Grbl setting

https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#25---homing-seek-mmmin
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#26---homing-debounce-milliseconds
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#27---homing-pull-off-mm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#30---max-spindle-speed-rpm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#31---min-spindle-speed-rpm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#32---laser-mode-boolean
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#100-101-and-102--xyz-stepsmm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#100-101-and-102--xyz-stepsmm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#100-101-and-102--xyz-stepsmm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#110-111-and-112--xyz-max-rate-mmmin
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#110-111-and-112--xyz-max-rate-mmmin
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#110-111-and-112--xyz-max-rate-mmmin
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#120-121-122--xyz-acceleration-mmsec2
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#120-121-122--xyz-acceleration-mmsec2
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#120-121-122--xyz-acceleration-mmsec2
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#130-131-132--xyz-max-travel-mm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#130-131-132--xyz-max-travel-mm
https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration#130-131-132--xyz-max-travel-mm

If everything went well, Grbl will respond with an 'ok' and this setting is stored in EEPROM
and will be retained forever or until you change them. You can check if Grbl has received
and stored your setting correctly by typing $$ to view the system settings again.

NOTE: From Grbl v0.9 to Grbl v1.1, only $10 status reports changed and new
$30 / $31 spindle rpm max/min and $32 laser mode settings were added.
Everything else is the same.

Stepper drivers are rated for a certain minimum step pulse length. Check the data sheet
or just try some numbers. You want the shortest pulses the stepper drivers can reliably
recognize. If the pulses are too long, you might run into trouble when running the system
at very high feed and pulse rates, because the step pulses can begin to overlap each
other. We recommend something around 10 microseconds, which is the default value.

Every time your steppers complete a motion and come to a stop, Grbl will delay disabling
the steppers by this value. OR, you can always keep your axes enabled (powered so as to
hold position) by setting this value to the maximum 255 milliseconds. Again, just to
repeat, you can keep all axes always enabled by setting $1=255 .

The stepper idle lock time is the time length Grbl will keep the steppers locked before
disabling. Depending on the system, you can set this to zero and disable it. On others, you
may need 25-50 milliseconds to make sure your axes come to a complete stop before
disabling. This is to help account for machine motors that do not like to be left on for long
periods of time without doing something. Also, keep in mind that some stepper drivers
don't remember which micro step they stopped on, so when you re-enable, you may
witness some 'lost' steps due to this. In this case, just keep your steppers enabled via
$1=255 .

This setting inverts the step pulse signal. By default, a step signal starts at normal-low
and goes high upon a step pulse event. After a step pulse time set by $0 , the pin resets
to low, until the next step pulse event. When inverted, the step pulse behavior switches

$0=10

Grbl's $x=val settings and what they mean

$0 – Step pulse, microseconds

$1 - Step idle delay, milliseconds

$2 – Step port invert, mask

from normal-high, to low during the pulse, and back to high. Most users will not need to
use this setting, but this can be useful for certain CNC-stepper drivers that have peculiar
requirements. For example, an artificial delay between the direction pin and step pulse
can be created by inverting the step pin.

This invert mask setting is a value which stores the axes to invert as bit flags. You really
don't need to completely understand how it works. You simply need to enter the settings
value for the axes you want to invert. For example, if you want to invert the X and Z axes,
you'd send $2=5 to Grbl and the setting should now read $2=5 (step port invert
mask:00000101) .

0 00000000 N N N

1 00000001 Y N N

2 00000010 N Y N

3 00000011 Y Y N

4 00000100 N N Y

5 00000101 Y N Y

6 00000110 N Y Y

7 00000111 Y Y Y

This setting inverts the direction signal for each axis. By default, Grbl assumes that the
axes move in a positive direction when the direction pin signal is low, and a negative
direction when the pin is high. Often, axes don't move this way with some machines. This
setting will invert the direction pin signal for those axes that move the opposite way.

This invert mask setting works exactly like the step port invert mask and stores which
axes to invert as bit flags. To configure this setting, you simply need to send the value for
the axes you want to invert. Use the table above. For example, if want to invert the Y axis
direction only, you'd send $3=2 to Grbl and the setting should now read $3=2 (dir port
invert mask:00000010)

By default, the stepper enable pin is high to disable and low to enable. If your setup needs
the opposite, just invert the stepper enable pin by typing $4=1 . Disable with $4=0 . (May
need a power cycle to load the change.)

$3 – Direction port invert, mask

$4 - Step enable invert, boolean

By default, the limit pins are held normally-high with the Arduino's internal pull-up
resistor. When a limit pin is low, Grbl interprets this as triggered. For the opposite
behavior, just invert the limit pins by typing $5=1 . Disable with $5=0 . You may need a
power cycle to load the change.

NOTE: For more advanced usage, the internal pull-up resistor on the limit pins may be
disabled in config.h.

By default, the probe pin is held normally-high with the Arduino's internal pull-up resistor.
When the probe pin is low, Grbl interprets this as triggered. For the opposite behavior, just
invert the probe pin by typing $6=1 . Disable with $6=0 . You may need a power cycle to
load the change.

This setting determines what Grbl real-time data it reports back to the user when a '?'
status report is sent. This data includes current run state, real-time position, real-time
feed rate, pin states, current override values, buffer states, and the g-code line number
currently executing (if enabled through compile-time options).

By default, the new report implementation in Grbl v1.1+ will include just about everything
in the standard status report. A lot of the data is hidden and will appear only if it changes.
This increases efficiency dramatically over of the old report style and allows you to get
faster updates and still get more data about your machine. The interface documentation
outlines how it works and most of it applies only to GUI developers or the curious.

To keep things simple and consistent, Grbl v1.1 has only two reporting options. These are
primarily here just for users and developers to help set things up.

Position type may be specified to show either machine position (MPos:) or work
position (WPos:), but no longer both at the same time. Enabling work position is
useful in certain scenarios when Grbl is being directly interacted with through a
serial terminal, but machine position reporting should be used by default.
Usage data of Grbl's planner and serial RX buffers may be enabled. This shows
the number of blocks or bytes available in the respective buffers. This is generally
used to helps determine how Grbl is performing when testing out a streaming
interface. This should be disabled by default.

$5 - Limit pins invert, boolean

$6 - Probe pin invert, boolean

$10 - Status report, mask

Use the table below enables and disable reporting options. Simply add the values listed of
what you'd like to enable, then save it by sending Grbl your setting value. For example,
the default report with machine position and no buffer data reports setting is $10=1 . If
work position and buffer data are desired, the setting will be $10=2 .

Position Type 0 Enable WPos: Disable MPos: .

Position Type 1 Enable MPos: . Disable WPos: .

Buffer Data 2 Enabled Buf: field appears with
planner and serial RX available
buffer.

Junction deviation is used by the acceleration manager to determine how fast it can move
through line segment junctions of a G-code program path. For example, if the G-code path
has a sharp 10 degree turn coming up and the machine is moving at full speed, this
setting helps determine how much the machine needs to slow down to safely go through
the corner without losing steps.

How we calculate it is a bit complicated, but, in general, higher values gives faster motion
through corners, while increasing the risk of losing steps and positioning. Lower values
makes the acceleration manager more careful and will lead to careful and slower
cornering. So if you run into problems where your machine tries to take a corner too fast,
decrease this value to make it slow down when entering corners. If you want your
machine to move faster through junctions, increase this value to speed it up. For curious
people, hit this link to read about Grbl's cornering algorithm, which accounts for both
velocity and junction angle with a very simple, efficient, and robust method.

Grbl renders G2/G3 circles, arcs, and helices by subdividing them into teeny tiny lines,
such that the arc tracing accuracy is never below this value. You will probably never need
to adjust this setting, since 0.002mm is well below the accuracy of most all CNC machines.
But if you find that your circles are too crude or arc tracing is performing slowly, adjust
this setting. Lower values give higher precision but may lead to performance issues by
overloading Grbl with too many tiny lines. Alternately, higher values traces to a lower
precision, but can speed up arc performance since Grbl has fewer lines to deal with.

For the curious, arc tolerance is defined as the maximum perpendicular distance from a
line segment with its end points lying on the arc, aka a chord. With some basic geometry,

$11 - Junction deviation, mm

$12 – Arc tolerance, mm

http://t.co/KQ5BvueY

we solve for the length of the line segments to trace the arc that satisfies this setting.
Modeling arcs in this way is great, because the arc line segments automatically adjust and
scale with length to ensure optimum arc tracing performance, while never losing
accuracy.

Grbl has a real-time positioning reporting feature to provide a user feedback on where the
machine is exactly at that time, as well as, parameters for coordinate offsets and probing.
By default, it is set to report in mm, but by sending a $13=1 command, you send this
boolean flag to true and these reporting features will now report in inches. $13=0 to set
back to mm.

Soft limits is a safety feature to help prevent your machine from traveling too far and
beyond the limits of travel, crashing or breaking something expensive. It works by
knowing the maximum travel limits for each axis and where Grbl is in machine
coordinates. Whenever a new G-code motion is sent to Grbl, it checks whether or not you
accidentally have exceeded your machine space. If you do, Grbl will issue an immediate
feed hold wherever it is, shutdown the spindle and coolant, and then set the system alarm
indicating the problem. Machine position will be retained afterwards, since it's not due to
an immediate forced stop like hard limits.

NOTE: Soft limits requires homing to be enabled and accurate axis maximum travel
settings, because Grbl needs to know where it is. $20=1 to enable, and $20=0 to disable.

Hard limit work basically the same as soft limits, but use physical switches instead.
Basically you wire up some switches (mechanical, magnetic, or optical) near the end of
travel of each axes, or where ever you feel that there might be trouble if your program
moves too far to where it shouldn't. When the switch triggers, it will immediately halt all
motion, shutdown the coolant and spindle (if connected), and go into alarm mode, which
forces you to check your machine and reset everything.

To use hard limits with Grbl, the limit pins are held high with an internal pull-up resistor,
so all you have to do is wire in a normally-open switch with the pin and ground and enable
hard limits with $21=1 . (Disable with $21=0 .) We strongly advise taking electric
interference prevention measures. If you want a limit for both ends of travel of one axes,
just wire in two switches in parallel with the pin and ground, so if either one of them trips,
it triggers the hard limit.

$13 - Report inches, boolean

$20 - Soft limits, boolean

$21 - Hard limits, boolean

Keep in mind, that a hard limit event is considered to be critical event, where steppers
immediately stop and will have likely have lost steps. Grbl doesn't have any feedback on
position, so it can't guarantee it has any idea where it is. So, if a hard limit is triggered,
Grbl will go into an infinite loop ALARM mode, giving you a chance to check your machine
and forcing you to reset Grbl. Remember it's a purely a safety feature.

Ahh, homing. For those just initiated into CNC, the homing cycle is used to accurately and
precisely locate a known and consistent position on a machine every time you start up
your Grbl between sessions. In other words, you know exactly where you are at any given
time, every time. Say you start machining something or are about to start the next step in
a job and the power goes out, you re-start Grbl and Grbl has no idea where it is due to
steppers being open-loop control. You're left with the task of figuring out where you are. If
you have homing, you always have the machine zero reference point to locate from, so all
you have to do is run the homing cycle and resume where you left off.

To set up the homing cycle for Grbl, you need to have limit switches in a fixed position
that won't get bumped or moved, or else your reference point gets messed up. Usually
they are setup in the farthest point in +x, +y, +z of each axes. Wire your limit switches in
with the limit pins, add a recommended RC-filter to help reduce electrical noise, and
enable homing. If you're curious, you can use your limit switches for both hard limits AND
homing. They play nice with each other.

Prior to trying the homing cycle for the first time, make sure you have setup everything
correctly, otherwise homing may behave strangely. First, ensure your machine axes are
moving in the correct directions per Cartesian coordinates (right-hand rule). If not, fix it
with the $3 direction invert setting. Second, ensure your limit switch pins are not showing
as 'triggered' in Grbl's status reports. If are, check your wiring and settings. Finally, ensure
your $13x max travel settings are somewhat accurate (within 20%), because Grbl uses
these values to determine how far it should search for the homing switches.

By default, Grbl's homing cycle moves the Z-axis positive first to clear the workspace and
then moves both the X and Y-axes at the same time in the positive direction. To set up
how your homing cycle behaves, there are more Grbl settings down the page describing
what they do (and compile-time options as well.)

Also, one more thing to note, when homing is enabled. Grbl will lock out all G-code
commands until you perform a homing cycle. Meaning no axes motions, unless the lock is
disabled ($X) but more on that later. Most, if not all CNC controllers, do something similar,
as it is mostly a safety feature to prevent users from making a positioning mistake, which
is very easy to do and be saddened when a mistake ruins a part. If you find this annoying

$22 - Homing cycle, boolean

or find any weird bugs, please let us know and we'll try to work on it so everyone is happy.
:)

NOTE: Check out config.h for more homing options for advanced users. You can disable
the homing lockout at startup, configure which axes move first during a homing cycle and
in what order, and more.

By default, Grbl assumes your homing limit switches are in the positive direction, first
moving the z-axis positive, then the x-y axes positive before trying to precisely locate
machine zero by going back and forth slowly around the switch. If your machine has a
limit switch in the negative direction, the homing direction mask can invert the axes'
direction. It works just like the step port invert and direction port invert masks, where all
you have to do is send the value in the table to indicate what axes you want to invert and
search for in the opposite direction.

The homing cycle first searches for the limit switches at a higher seek rate, and after it
finds them, it moves at a slower feed rate to home into the precise location of machine
zero. Homing feed rate is that slower feed rate. Set this to whatever rate value that
provides repeatable and precise machine zero locating.

Homing seek rate is the homing cycle search rate, or the rate at which it first tries to find
the limit switches. Adjust to whatever rate gets to the limit switches in a short enough
time without crashing into your limit switches if they come in too fast.

Whenever a switch triggers, some of them can have electrical/mechanical noise that
actually 'bounce' the signal high and low for a few milliseconds before settling in. To solve
this, you need to debounce the signal, either by hardware with some kind of signal
conditioner or by software with a short delay to let the signal finish bouncing. Grbl
performs a short delay, only homing when locating machine zero. Set this delay value to
whatever your switch needs to get repeatable homing. In most cases, 5-25 milliseconds is
fine.

$23 - Homing dir invert, mask

$24 - Homing feed, mm/min

$25 - Homing seek, mm/min

$26 - Homing debounce, milliseconds

$27 - Homing pull-off, mm

To play nice with the hard limits feature, where homing can share the same limit switches,
the homing cycle will move off all of the limit switches by this pull-off travel after it
completes. In other words, it helps to prevent accidental triggering of the hard limit after a
homing cycle. Make sure this value is large enough to clear the limit switch. If not, Grbl
will throw an alarm error for failing to clear it.

This sets the spindle speed for the maximum 5V PWM pin output. For example, if you want
to set 10000rpm at 5V, program $30=10000 . For 255rpm at 5V, program $30=255 . If a
program tries to set a higher spindle RPM greater than the $30 max spindle speed, Grbl
will just output the max 5V, since it can't go any faster. By default, Grbl linearly relates
the max-min RPMs to 5V-0.02V PWM pin output in 255 equally spaced increments. When
the PWM pin reads 0V, this indicates spindle disabled. Note that there are additional
configuration options are available in config.h to tweak how this operates.

This sets the spindle speed for the minimum 0.02V PWM pin output (0V is disabled). Lower
RPM values are accepted by Grbl but the PWM output will not go below 0.02V, except
when RPM is zero. If zero, the spindle is disabled and PWM output is 0V.

When enabled, Grbl will move continuously through consecutive G1 , G2 , or G3 motion
commands when programmed with a S spindle speed (laser power). The spindle PWM pin
will be updated instantaneously through each motion without stopping. Please read the
GRBL laser documentation and your laser device documentation prior to using this mode.
Lasers are very dangerous. They can instantly damage your vision permanantly and cause
fires. Grbl does not assume any responsibility for any issues the firmware may cause, as
defined by its GPL license.

When disabled, Grbl will operate as it always has, stopping motion with every S spindle
speed command. This is the default operation of a milling machine to allow a pause to let
the spindle change speeds.

Grbl needs to know how far each step will take the tool in reality. To calculate steps/mm
for an axis of your machine you need to know:

$30 - Max spindle speed, RPM

$31 - Min spindle speed, RPM

$32 - Laser mode, boolean

$100, $101 and $102 – [X,Y,Z] steps/mm

https://github.com/gnea/grbl/wiki/Grbl-v1.1-Laser-Mode

The mm traveled per revolution of your stepper motor. This is dependent on your
belt drive gears or lead screw pitch.
The full steps per revolution of your steppers (typically 200)
The microsteps per step of your controller (typically 1, 2, 4, 8, or 16). Tip: Using
high microstep values (e.g., 16) can reduce your stepper motor torque, so use the
lowest that gives you the desired axis resolution and comfortable running
properties.

The steps/mm can then be calculated like this: steps_per_mm =
(steps_per_revolution*microsteps)/mm_per_rev

Compute this value for every axis and write these settings to Grbl.

This sets the maximum rate each axis can move. Whenever Grbl plans a move, it checks
whether or not the move causes any one of these individual axes to exceed their max
rate. If so, it'll slow down the motion to ensure none of the axes exceed their max rate
limits. This means that each axis has its own independent speed, which is extremely
useful for limiting the typically slower Z-axis.

The simplest way to determine these values is to test each axis one at a time by slowly
increasing max rate settings and moving it. For example, to test the X-axis, send Grbl
something like G0 X50 with enough travel distance so that the axis accelerates to its max
speed. You'll know you've hit the max rate threshold when your steppers stall. It'll make a
bit of noise, but shouldn't hurt your motors. Enter a setting a 10-20% below this value, so
you can account for wear, friction, and the mass of your workpiece/tool. Then, repeat for
your other axes.

NOTE: This max rate setting also sets the G0 seek rates.

This sets the axes acceleration parameters in mm/second/second. Simplistically, a lower
value makes Grbl ease slower into motion, while a higher value yields tighter moves and
reaches the desired feed rates much quicker. Much like the max rate setting, each axis
has its own acceleration value and are independent of each other. This means that a
multi-axis motion will only accelerate as quickly as the lowest contributing axis can.

Again, like the max rate setting, the simplest way to determine the values for this setting
is to individually test each axis with slowly increasing values until the motor stalls. Then
finalize your acceleration setting with a value 10-20% below this absolute max value. This

$110, $111 and $112 – [X,Y,Z] Max rate, mm/min

$120, $121, $122 – [X,Y,Z] Acceleration, mm/sec^2

should account for wear, friction, and mass inertia. We highly recommend that you dry
test some G-code programs with your new settings before committing to them.
Sometimes the loading on your machine is different when moving in all axes together.

This sets the maximum travel from end to end for each axis in mm. This is only useful if
you have soft limits (and homing) enabled, as this is only used by Grbl's soft limit feature
to check if you have exceeded your machine limits with a motion command.

Grbl's default configuration is intentionally very generic to help ensure users can see
successful motion without having to tweak settings. Generally, the first thing you'll want
to do is get your stepper motors running, usually without it connected to the CNC. Wire
Grbl to your stepper drivers and stepper motors according to your manufacturer
guidelines. Connect to Grbl through a serial terminal or one of many Grbl GUIs. Send some
G1 or G0 commands to Grbl. You should see your stepper motor rotating. If you are
having trouble with your stepper motors, try the following:

Ensure everything is wired and powered correctly per your stepper driver
manufacturer guidelines.
If your steppers are mounted in your CNC already, ensure your axes move freely
and don't obviously bind. If you can't easily tell, try removing your steppers and
check if they run under no load.
Ensure your stepper motors and axes linear mechanisms are all tight and secure.
Small set screws on drivetrain components becoming loose is a very common
problem. Re-tighten and try applying some non-permenant thread locker (Loctite
blue) if it continually loosens.
For more difficult issues, try the process of elimination to quickly isolate the
problem. Start by disconnecting everything from the Arduino. Test if Grbl is
operating ok by itself. Then, add one thing at a time and test.
If your steppers are powered and making a grinding noise when trying to move,
try lowering the '$' acceleration and max rate settings. This sound is a sign that
your steppers is losing steps and not able to keep up due too much torque load or
going too fast.
Grbl's default step pulse settings cover the vast majority of stepper drivers on the
market. While very uncommon, check these settings if you are still experiencing

$130, $131, $132 – [X,Y,Z] Max travel, mm

Quick Guide to Setting Up Your Machine for the
First Time

http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g1
http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g0

problems or have a unusual setup.

Next, you will need to make sure your machine is moving in the correct directions
according to a Cartesian(XYZ) coordinate frame and satisfies the right-hand rule, as
shown:

Mount your stepper motors into your CNC, if you haven't already done so. Send Grbl some
motion commands, such as G91 G0 X1 or G91 G0 X-1 , which will move the x-axis +1mm
and -1mm, respectively. Check all axes. If an axis is not moving correctly, alter the $3
direction port mask setting to invert the direction.

If you are unfamiliar with how coordinate frames are setup on CNC machines, see this
great diagram by LinuxCNC. Just keep in mind that motions are relative to the tool. So on
a typical CNC gantry router, the tool will move rather than the fixed table. If the x-axis is
aligned positive to the right, a positive motion command will move the tool to the right.
Whereas, a moving table with a fixed tool will move the table to the left for the same
command, because the tool is moving to the right relative to the table.

Finally, tune your settings to get close to your desired or max performance. Start by
ensuring your $100 , $101 , and $102 axes step/mm settings are correct for your setup.
This is dependent on your stepper increments, micro steps on your driver, and mechanical
parameters. There are multiple resources online to show you how to compute this for your
particular machine, if your machine manufacturer has not supplied this for you. Tweak
your $12x acceleration and $11x max rate settings to improve performance. Set to no
greater than 80% of absolute max to account for inertia, cutting forces, and motor torque
reductions with speed. Set your $13x max travel settings if you plan on using homing or
soft limits. It's recommended to enter something approximately close to actual travel now
to avoid problems in the future.

At this point, you're pretty much ready to get going! Grbl can now move your CNC
machine and run g-code jobs. If you need to add more features, such as limit switches for
homing or hard limits or spindle/laser control. There are other Wiki pages to help you that.
Good luck and have fun!

https://wiki.stadtfabrikanten.org/uploads/images/gallery/2025-02/zvv3curlY7oKoIt5-grafik.png
http://linuxcnc.org/docs/html/user/user-concepts.html#_machine_configurations

Version #1
Erstellt: 27 Februar 2025 00:11:53 von Mario Voigt
Zuletzt aktualisiert: 27 Februar 2025 00:13:24 von Mario Voigt

